Same signal, many sounds by kelly heaton

I've been migrating my circuits out of the breadboard and into soldered form. I'm also hooking up speakers so that my sound generating circuits are ready for installation in a sculpture of Virginia's nocturnal ecosystem. Because most of my circuits use a custom piezo electric speaker (built with my own amplifier board), I have to install each piezo element into a physical housing... and there's some interesting "play" here. One electronic signal can generate many different sounds depending upon the speaker's physical design. Here's a video of me testing various installations of a piezo element for an insect that makes a steady background noise.

It's cool to experiment with the interface between electrical signal and material properties. It's also critical to get it right, or else the piezo element will make a horrible rattling or screeching. Even a tiny drop of glue (to fix the piezo element in place) will alter the sound quality --usually the pitch-- and superglue can sound different from rubber cement or hot glue or tape. All of this is no news to a human musician, who knows that a note ill-played (even slightly) is a fail, and teensy subtleties often make the difference between average sound quality and genius.

It is interesting to wonder what makes animals of the same species sound different in nature: is it their electrical impulse or their physical form? (Is it their schematic, their CAD file, or their bill of materials?) Members of the same species inherit the same circuit design as well as physique. External physical factors, such as climate, have some degree of influence over material properties of the body --for example, a dehydrated cricket sounds differently than the same cricket wet with rain; a fat frog sings a different tune than the same frog skinny; and so on and so forth. We also know that "animal circuits" are sensitive to electromagnetic fields, and capacitive coupling undoubtedly affects individuals in close proximity. I suspect that physical factors play a greater role in the variability of an individual's song if but for no other reason because birds sound the same whether they are sitting on a tree branch or an electrical transformer (at least, I think they do). PS: Eventually I will tackle the challenge of bird song, but their vocal complexity requires more computation... which is why I have started with insects.

To end this log, I leave you with one more video clip of my "background noise" insect. Here it is with a plastic spool installed over the piezo (now painted green, black, and white). The soldered perfboard is embedded in a cardboard cutout that is painted to look like a forest creature sounds. Soon, this mixed media object will be joined with other embellished animal circuits to build a vignette of nocturnal musicians.

Mother Nature Board by kelly heaton

If you’re curious about how I create circuits for my electronic art, check out my new project “Hacking Nature’s Musicians” on Hackaday.io. In a recent entry, I explain how I built a random pulse generator to simulate the natural “timing effects” of Mother Nature conducting a chorus.

https://hackaday.io/project/161443-hacking-natures-musicians/log/153829-mother-nature-board-aka-how-to-conduct-a-natural-chorus

Below (and on Vimeo) is a video overview of the circuit.

lesser angle-winged katydid by kelly heaton

lesser-angle-winged-katydid.jpg

Watercolor and analog electronic study of a Lesser Angle-winged Katydid, 2018. I plugged in a couple of crickets to give this fellow some natural context. To read more about how I made this, visit my project “Hacking Nature’s Musicians” : https://hackaday.io/project/161443-hacking-natures-musicians

Follow me on Hackaday by kelly heaton

I have started a project to describe and share my analog electronic circuits designs so that people can better understand my electronic practice. My project, located on Hackaday.io, is called “Hacking Nature’s Musicians.” You can find it here: https://hackaday.io/project/161443-hacking-natures-musicians

In a recent project log, I describe how I create chirping crickets using discrete transistors. Check it out: https://hackaday.io/project/161443-hacking-natures-musicians/log/153312-crickets-natures-favorite-astable-multivibrator



down time by kelly heaton

Earlier this week, I had arthroscopic surgery on my left hip to repair an old injury that was becoming arthritic. This post is an evolving repository of and video loops that I’m creating during my downtime.

Reconstructing tree (and me) by kelly heaton

Studio work in-progress, September 2018.

I’m getting ready to have arthroscopic surgery on my left hip to repair an old injury that is becoming arthritic. Meanwhile, looking at the state of my studio, it appears that I have imposed my own condition on this tree branch —a work in-progress for my latest Electrolier. Some people have commented that my approach is convoluted and I will not argue with that. However, I often find myself undertaking arduous and complex works because a big challenge yields so many little surprises, adaptations, and personal touches that don’t happen when you follow a direct path from concept to object. I am not a “special effects” artist. My art is more about the process of becoming —the struggle to achieve a difficult but worthy goal— than it is about the end result. Of course, I want the end result to be beautiful, but I strive for a beauty that is multi-layered, honest, generous, and full of stories.

Depending upon my recovery process, it may be a few weeks before I can continue with making sculpture. Meanwhile my studio is a good portrayal of my current state of being: a lot happening all at once, incomplete, in need of a good clean-up, and full of promise.

Owl surgery by kelly heaton

Paper owl looking onto its electronic eye circuit, 2018

Paper owl looking onto its electronic eye circuit, 2018

Transitions. Sometimes it feels like the holes that we have are equally -if not more- beautiful than what promises to fill them. Here, a paper owl contemplates the circuit that I designed to fit into its eyes. The addition of electronics to a static object adds more than functionality and aesthetics - it changes the identity of the object. Non-electronic things live in a physical world with thousands of years of creative history, while electronic things are very new. What was once an owl then become a robot - perhaps more robot than owl in our estimation. Does the owl stand to lose more than it gains?

Machine-centric intelligence by kelly heaton

We struggle to relate to machines on their own terms, despite the fact that we created them. I suppose there are people with fluency in some machines, but the body of knowledge in computer science alone vastly exceeds anyone's capacity to understand. Moreover, there are subtle and often surprising effects that arise from even basic electronic components - instruments for manipulating electricity in ways that have yet to be discovered. 

However, if you add human features like the eyes in this video, suddenly we connect. But with what do we relate, really, besides our own reflection? We must push ourselves beyond human-centricity to see things for what they really are.